THERMODYNAMICS

Zeroth law of Thermodynamics

According to this law, two systems in thermal equilibrium with a third system separately are also in thermal equilibrium in each other

First law of Thermodynamics

Heat given to a thermodynamic system (ΔQ) is partially utilised in doing work (ΔW) against the surrounding and the remaining part increases the internal energy (ΔU) of the system.

 $Q = \Delta U + \Delta W$

Second law of Thermodynamics

It is impossible to transfer heat from a lower temperature body to a higher temperature body without use of an external agency.

Kelvin-Plank Statement

It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce only a net

Clausius Statement

It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body.

W	=	p	×	ΔV	

$$W = \int_{V_i}^{V_F} p\Delta V = Area ABCDA$$

Quantity	Sign	Condition	
ΔQ	+	When heat is supplied to a system	
ΔQ		When heat is drawn to a system	
ΔW	+	When work done by the gas (expansion)	
Δνν	-	When work done on a system (compression)	
ALL	+	With temp. rise, internal energy decreases	
ΔU	-	With temp. fall, internal energy decreases	

Internal Energy	$U = nf \frac{RT}{2}$	
Polytropic Process	$W. D. = \frac{nR\Delta T}{1-x}$	
Ideal Gas Relation	$C_P - C_V = R$	

Thermodyn	amic Processes
Quasistatic Process	$ds = \frac{\delta q}{T}$
Isothermal Process	$\Delta U = 0$
Adiabatic Process	$\Delta Q = 0$
Isobaric Process	$\Delta P = 0$
Isochoric Process	$\Delta V = 0$
Cyclic Process	$\Delta U = 0$
Somerman	isobaric
Entropy	$dS = \frac{dQ_{rev}}{T}$
	$dS = \frac{dQ_p}{T} = \frac{dH}{T} = \frac{mL}{T}$

Absorption, Reflection and Emission of Radiation

$$Q = Q_R + Q_T + Q_a$$

$$1 = \frac{Q_R}{Q} + \frac{Q_T}{Q} + \frac{Q_a}{Q}$$

$$l = r + t + a$$

$$r = 0$$
, $t = 0$, $a = 1$, perfect black body
 $r = 1$, $t = 0$, $a = 0$, perfect reflector
 $r = 0$, $t = 1$, $a = 0$, perfect transmitter

Emissivity

 $e = \frac{Emission\ power\ of\ a\ body\ at\ temperature\ T}{Emission\ power\ of\ a\ black\ body\ at\ same\ temperature\ T}$

